Search results

1 – 3 of 3
Article
Publication date: 29 September 2021

Yaasin Abraham Mayi, Alexis Queva, Morgan Dal, Gildas Guillemot, Charlotte Metton, Clara Moriconi, Patrice Peyre and Michel Bellet

During thermal laser processes, heat transfer and fluid flow in the melt pool are primary driven by complex physical phenomena that take place at liquid/vapor interface. Hence…

474

Abstract

Purpose

During thermal laser processes, heat transfer and fluid flow in the melt pool are primary driven by complex physical phenomena that take place at liquid/vapor interface. Hence, the choice and setting of front description methods must be done carefully. Therefore, the purpose of this paper is to investigate to what extent front description methods may bias physical representativeness of numerical models of laser powder bed fusion (LPBF) process at melt pool scale.

Design/methodology/approach

Two multiphysical LPBF models are confronted: a Level-Set (LS) front capturing model based on a C++ code and a front tracking model, developed with COMSOL Multiphysics® and based on Arbitrary Lagrangian–Eulerian (ALE) method. To do so, two minimal test cases of increasing complexity are defined. They are simplified to the largest degree, but they integrate multiphysics phenomena that are still relevant to LPBF process.

Findings

LS and ALE methods provide very similar descriptions of thermo-hydrodynamic phenomena that occur during LPBF, providing LS interface thickness is correctly calibrated and laser heat source is implemented with a modified continuum surface force formulation. With these calibrations, thermal predictions are identical. However, the velocity field in the LS model is systematically underestimated compared to the ALE approach, but the consequences on the predicted melt pool dimensions are minor.

Originality/value

This study fulfils the need for comprehensive methodology bases for modeling and calibrating multiphysical models of LPBF at melt pool scale. This paper also provides with reference data that may be used by any researcher willing to verify their own numerical method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 March 2011

Patrice Peyre, Neila Hfaiedh, Hongbin Song, Vincent Ji, Vincent Vignal, Wilfrid Seiler and Stephane Branly

The purpose of this paper is to conduct a comparative study of the surface modifications induced by two different lasers on a 2050‐T8 aluminum alloy, with a specific consideration…

Abstract

Purpose

The purpose of this paper is to conduct a comparative study of the surface modifications induced by two different lasers on a 2050‐T8 aluminum alloy, with a specific consideration of residual stress and work‐hardening levels.

Design/methodology/approach

Two lasers have been used for Laser shock peening (LSP) treatment in water‐confined regime: a Continuum Powerlite Plus laser, operating at 0.532 mm with 9 ns laser pulses, and near 1.5mm spot diameters; a new generation Gaia‐R Thales laser delivering 10 J‐10 ns impacts, with 4‐6mm homogeneous laser spots at 1.06 mm. Surface deformation, work‐hardening levels and residual stresses were analyzed for both LSP conditions. Residual stresses were compared with numerical simulations using a 3D finite element (FE) model, starting with the validation of surface deformations induced by a single laser impact.

Findings

Similar surface deformations and work‐hardening levels, but relatively lower residual stresses were obtained with the new large 4‐6 mm impact configuration. This was attributed to a reduced number of local cyclic loadings (2) compared with the small impact configuration (4). Additionally, more anisotropic stresses were obtained with small impacts. FE simulations using Johnson‐Cook's material' behavior were shown to simulate accurately surface deformations, but to overestimate maximum stress levels.

Research limitations/implications

This work should provide LSP workers a better understanding of the possible benefits from the different LSP configurations currently co‐existing: using small (<2 mm) impacts at high‐cadency rates or large ones (>4‐5 mm). Moreover, experimental results and simulated data had never been presented on 2050‐T8 Al alloy.

Originality/value

An experimental (and numerical) comparison using two distinct laser sources for LSP, has never been presented before. This preliminary work should help LSP workers to choose adequate sources.

Details

International Journal of Structural Integrity, vol. 2 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Content available

Abstract

Details

International Journal of Structural Integrity, vol. 2 no. 1
Type: Research Article
ISSN: 1757-9864

1 – 3 of 3